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Abstract. A differential calculus on an associative algebra A is an algebraic analogue of the 
calculus of differential forms on a smooth manifold. It supplies A with a SWCNR on which 
dynamics and field theory can to some extent be formulated, in very much the same way we 
are used to in the geometrical arena underlying classical physical theories and models. In 
previous work, certain differential calculi on a commutative algebra exhibited relations with 
lattice structures, stochastics. and parametrized quanhlm theories. This motivated the p a n t  
systematic investigation of differential calculi on commutative and associalive algebras. Various 
results about their s t " m  are obtained. In particular, it is shown that there is a correspondence 
between first-order differential calculi on such an algebra and commutative and assochtive 
products in the space of I-forms. An example of such a product is provided by the It8 calculus 
of stochastic differentials. For the case where the algebra A is freely generated by 'coordinates' 
xi, i = I .  . . , , n, we study calculi for which the differentials dr' constitute a basis of the space 
of I-forms (as a lefi-A-module). These may be regarded as 'deformations' of the ordinary 
differential calculus on Rn. For n < 3 a classification of all (orbits under the general linear 
group 00 such calculi with 'constant srmchlre fundions' is presented. We analyse whether these 
calculi are reducible (i.e. a skew tensor product of lowerdimensional calculi) or whether they 
are the extension (as defined in this paper) of a one-dimension-lower calculus. Funhermore. 
generalizations to arbitrary n are obtained for all these calculi. 

1. Introduction 

During the last few years there has been rapidly increasing interest in 'non-commutative 
geomeny'. Basically, this notion stands for an attempt to get away from the classical concept 
of a (differentiable) manifold as the arena in which physics takes place. In particular, this is 
strongly motivated by considerations about spacetime structure at very small length scales, 
and quantum gravity. The manifold is replaced by some abstract algebra A which is usually 
assumed to be associative, but not necessarily commutative. In order to be able to formulate 
dynamics and field theories on or with such 'generalized spaces', a convenient tool appears 
to be a 'differential calculus' on it, which is an algebraic analogue of the calculus of 
differential forms on a manifoldt. 

If the algebra A is commutative, then one can construct a (topological) space on which 
it can be realized as an algebra of functions. Besides the familiar continua this case also 
includes finite or, more generally, discrete spaces. Differential calculi on commutative 

* Temporary address. 
t Such a point of view has been pioneered by Roben Hermann Ill. 
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algebras have been considered and explored in several papers (see [MI, for example). 
If the algebra A is (freely) generated by 'coordinates' x k ,  k = 1,. . . , n (together with a 
unit), a differential calculus on it can be specified via commutation relations with their 
'differentials' 

H C Buehr et a! 

[ d x k ,  x ' ]  = Ck', dx" (1.1) 

where C'&, E A (subject to certain constraints)t. An example of interest for physics is 
given by 

[ d x k ,  x ' ]  = uk P d x '  (no summation) (1.2) 

which may be regarded as the basic structure underlying lattice theories 131 (aX plays the 
role of the lattice spacing in the kth direction). Another example is 

[dx', X' ]  = y gk& dx"*' [dx"+l, X X ]  = 0 (1.3) 

where gkL are the components (with respect to coordinates xi on a manifold) of a real 
contravariant tensor field. For y = iA this may be viewed as a basic structure underlying 
parametrized (proper time) quantum theories [4]. For real and positive definite y g'J one 
recovers the It6 calculus of stochastic differentials [5 ] .  These examples motivate a systematic 
investigation of the possibilities. In 131 all differential calculi subject to (1.1) with n = 2 
and constant smchre functions, i.e. C", E 'C, were classified$. The procedure used there 
does not extend to n > 2, however. We therefore propose here an alternative method and 
present the classification of three-dimensional calculi (see also 191). 

Section 2 recalls some basic definitions and constructions used in what follows. 
Section 3 presents general results about differential calculi on a commutative (and 
associative) algebra A. In particular. it is shown that every (first-order) differential calculus 
on A determines an .A-bilinear commutative and associative product in the space of 1- 
forms. This relates the problem of classifying (first-order) differential calculi to that of 
determining all A-bimodules with such product structures. This correspondence generalizes 
the relation established in [5 ]  between the It6 calculus of stochastic differentials (where one 
has a product in the space of 1-forms) and a differential calculus of the form (1.3). 

In section 4 we consider the case where A is freely generated (as a commutative and 
associative algebra) by elements x i ,  i = 1, .. . , n, together with a unit 1. The class of 
differential calculi for which the set of differentials dx' are a basis of the space of 1-forms 
(as a left-A-module) is then explored in some detail. They may be regarded as deformations 
of the ordinary differential calculus on R" and are therefore of special interest. We then 
address the classification problem for such calculi with constant structure functions and 
describe corresponding results. The action of the 'exterior derivative' d determines left- 
and right-partial derivatives Dhi : A + A via 

df = (Dif)dx' = dx' D-if (V f E A) .  (1.4) 

They display the most important properties of a differential calculus. Some general results 
concerning their structure are obtained (see also subsection 3.3). Examples are provided 
by the irreducible calculi which arose from our classification of n = 3 calculi. Section 5 
contains some conclusions. 

t On the r.h.s. of the last equation and in the following we are using the summation convention if m stated 
otherwise. 
$ In 171 the case n = 2 and Ck', linear in x L  has been trea,ted. Such differential calculi m also obtained from 
calculi on the Heisenberg algebra [SI in ihe limit h + 0. 
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2. Algebraic differential calculi on associative algebras 

In this section some basic algebraic constructions are recalled which are needed in the 
following sections. 

Let A be an associative algebra overt C with unit 1. A differentid calculus$ (SZ(A), d) 
on A is a graded associative algebra 
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where W(A) are A-bimodules and no(A) = A. It is supplied with a linear operator of 
degree 1 

(2.2) 
satisfying dz = 0, d l  = 0 and 

d(@w') = (dw)w'+ (-1)'wdw' (2.3) 
where w E Q'(A). d is called exterior derivative. We also demand that, for r z 0, W(A) 
is generated by d in the sense that dQ'-'(A) generates F ( A )  as an A-bimodule. We also 
assume that O(A) is unital with unit (1,0, . . .). The elements of P ( A )  are called r-form. 

@'(A), d) (with d restricted to A) is afirst-order differential calculus on A. d is then 
a derivation A --t SZ'(A). 

2.1. The universalfrst-order differenfial culculus 

The tensor product A @  A consists of finite linear combinations (with coefficients in C) of 
terms f @ h where f ,  h E A. Via 

it carries an A-bimodule structure. The multiplication in A yields a map 

which is a bimodule homomorphism. Defining 

d : W(A) -+ O'*'(d) 

g ( f  a h )  := ( g f )  @ h  ( f @ h ) g  := f@ (hg) (2.4) 

p : A @ A + A  f @ h H  f h  (2.5) 

fi*(A) := ker p = f .  @ h. f,h, = 0 
l a  l a  1 (2.6) 

there is a map 

The image of A under d generates fi'(A) as an A-bimodule. (fi'(A).a) is the universal 
first-order differential calculus on A. It has the following universal property. 

Theorem 2.1. For each derivation d : A + M into some A-bimodule M there is one 
and only one A-bimodule homomorphism q5 : &(A) -+ M such that d = q5 o a, i.e. the 
following diagram commutes: 

a :  ~ + f i l ( ~ )  f~ t ~ f - f ~ i .  (2.7) 

i Most of Ihe following also worb over R (or other fields), but for the classification results in section 4 the choice 
C is essential. 
$ In the mathematical literature it is usually called a dgerential graded algebra. 
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Pmoj see [lo], chapter III, subsection 10.10, for example. 0 

As a consequence of this theorem, every first-order differential calculus (Q'(A), d) on 
d (which is generated by d) is isomorphic to a quotient of &(A) by some d-sub-bimodule 
(the kernel of the respective homomorphism +). 

2.2. The universal differential calculus 

Let ($(d), 2) be the universal first-order differential calculus. Defide 

p times 
Then 

m 
fi(A) := @ hp(A) 

P* 
(2.9) 

with the multiplication @A becomes a graded associative algebra. The extension of 2 to an 
exterior derivative is given by 

and C-linearity. (fi(A). 2) is the universal d@erenrial cakulust on A. It has a universal 
property generalizing theorem 2.1 (see [ l l ] ,  for example). Any differential calculus on A 
(for which d W ( d )  generates QP+'(d) as an d-bimodule) can be obtained from @(A), 2) 
as a quotient with respect to some two-sided differential ideal in 6(d) (an ideal which is 
closed under 2). 

2.3. Reducibility and skew tensor products of differenrial calculi 

Let (Q(A). d) and (Q(d'), d') be differential calculi on A and A', respectively. From these 
one can build the differential calculus (Q(d) 6 n(d ' ) ,  a), called the skew tensorproduct 
(cf [ I l l ,  appendix A, and [12], chapter ll $). The underlying set is the tensor product 
Q(d) @ Q(d') =: h. The grading i s  given by 

m 

r=o P=o 
fi=@h' with h' = 6 QP(d) 8 Q'-P(A'). (2.11) 

Multiplication is defined by 

(U 6 w')@ 6 p') := (-I)a"..Jp (up 6 "p ' )  (2.12) 

and @-linearity. ao denotes the grade of the form w. We use 6 to stress the difference 
compared with the canonical multiplication. The linear operator 2 on Q(d)  6 Q(A') acts 
as follows: 

h ( o 6 ~ ' ) = ( d o )  6 d + ( - l ) a m ~ 6 d ' d .  (2.13) 

Given a differential calculus on an algebra d. the question arises as to whether it is 
reducible in the sense that it is a skew tensor product of differential calculi. If not, we 
should call the differential calculus irreducible. 
t It is Karoubi's di@renriolenr;Llope of A (see [Ill).  
1 Instead of skew the term anticommurcztilive is used there 
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2.4. Inner extensions of derivations 

A derivation d : A --t M, where M is an A-bimodule, is called inner if there is an element 
p E M such that 

d f = [ p , f l  V f e A .  (2.14) 
We say that a (first-order) differential calculus is inner if its exterior derivative d is inner. 

Given a derivation d : A + M (which may already be inner), the A-bimodule M can 
always be extended into a larger A-bimodule k such that d becomes inner. This is done by 
adding an (independent) element p as follows. Let dP be the free left-A-module generated 
by p and define ~ := M f3 ~p which is then also a lefiCA-module. A right-A-module 
structure can then be introduced on h? by requiring M C M to be an A-sub-bimodule and 
setting 

( h p ) f : = h f p + h d f  V f , h E A .  (2.15) 

(2.16) 
and 

P (hf) = h f P + W f )  = h f P + h d f  + 
= ( ~ h ) f  (2.17) 

which extends the A-bimodule stnicture of M to M. 
In some cases it is possible to enlarge the algebra A (by introducing an additional 

generator) to an algebra A and to extend d such that it becomes inner with an element p 
of the A-bimodule generated by dA. See subsection 4.1. 

f = h ( P  f )  + (dh) f = ( h  P + dh) f 

3. Differential calculi on commutative algebras 

In this section, A always denotes an associative and commutative algebra. It will be shown 
that the space of I-forms of any first-order differential calculus on A then also carries (in 
a canonical way) the smucture of an associative and commutative algebra. 

3.1. The canonical product in the space of universal I-forms 

With the multiplication 

(f @h)( f '@h ' ) :=  ff '@hh'  V f, f ' , h , h ' E A  (3.1) 
A 0 A becomes an associative algebra (over C). For a commutative algebra, the map p 
defined in (2.5) is an algebra homomorphism. (3.1) thus induces a 'canonical product' 

fi '(A)xfi '(d)+ 8'(d) (G,G')-G*G' (3.2) 
in the space b'(A) of I-forms of the universal first-order differential calculus on At. It is 
associative, commutative and A-bilinear, i.e. 

(3.3) (f Bh) ( f  'G'h') = f f '  (G G') hh' 
(cf equation (2.4)). From the identity 

(3.4) 

t Here we introduce in order to distinguish the product from the one in fl(d). 
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in A @ d and from (2.7) we deduce the following important property: 

A simple calculation leads to 

which is generalized in the following lemma. 

Lemma 3.1. 

H C Baehr et a1 

[G , f ]=G.a f  V & i E ' ( d )  f E d .  (3.5) 

; I ( f h )  = f Ah + h Jf + Af ah (3.6) 

where the indices on the r.h.s. are totally symmehized (indicated by brackets). 

Proof: First we note that 

f~~...fk-~af~.....af~+~) = (k- 1)!(r - k + 2 ) ! f ~ , . . . f i , _ , a f ~ ~ o . . . . a f e , + ,  

where the sum is over all partitions of (1,. . . , r + 1) into ordered tuples (l1,. . . , &I). 

(&, ...,&+ I). This sum splits into a sum over partitions with r + 1 E {!I, . . . , & I )  
and a sum over partitions with r + 1 E &, . ..,!,+I). In the first sum we can use the 
commutativity of A to pull &+I in front of the summation sign. In the second sum the 
commutativity of allows us to write 2f,+1 to the right of all terms. The two sums can then 
be expressed as a sum over all partitions of (1.. . . , r )  into ordered tuples ([I , .  . . , &2), 
(!,-I,. . . , e , )  and (!I,. . . ,&-I) ,  (&, . . . , t ,),  respectively. Using our first formula above, 
we arrive at the identity 

QartidOOS 

which can now be used to prove (3.7) by induction. 

A result about 2-forms is expressed next. 

Lemma 3.2. 

Proof: This is carried out by induction. In order to show that (3.8) implies the 
corresponding formula with r replaced by r + 1, one may start with the 1.h.s. of the latter 
and write 

(&?I ' ' ' ah) 6h+I ' ' ' ih+I)) 
= k! (r t 1 - k)! (aft, . . . ah,) (dh*+, . . . aft ,+,)  

Qardt iOOS 

where the sum is taken over all partitions of (1,. . . , r + 1) into ordered tuples (!I,. . . , &), 
(&+I,. . . ,&+I) .  This sum splits into a sum over partitions with r + 1 E ( e l . .  , . , .?A) and 
a sum over partitions with r + 1 E (!,+I, . . . , .? ,+I  ). The first of these sums can then 
be expressed as a sum over all partitions of (1.. . . , r )  into ordered tuples ( e l , .  . . , .&+I), 
(&, . . . , !,). The second sum is treated similarly. The further procedure is then quite 
obvious. 0 
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3.2. The algebra structure of ajrst-order differential calculus 

Let (Q'(d), d) be a first-order differential calculus on d. In the following, we show that 
the canonical product in the space fi'(d) of universal I-forms induces a corresponding 
product in n'(A). 

Lemma 3.3. If @ : &(A) + Q'(d) is an A-bimodule homomorphism, then ker4 is an 
ideal in @(A) as an algebra with product 0.  

ProoJ An arbitrary element of 
jo, h, E d. Let 6 E ker@. Then 

can be written as E, ja(l  c3 h. - h, c3 1) with 

Since is commutative, this shows that ker@ is an ideal. 0 

As a consequence of chis lemma and theorem 2.1, we now obtain the following result. 

Theorem 3.1. For every first-order differential calculus @'(a) ,  d) there is a unique d- 
bilinear associative and commutative product o in Q'(d) such that [o, f] = o o df.  0 

The next lemma gives a characterization of inner differential calculi. 

Le" 3.4. The derivation d of a first-order differential calculus is inner if and only if 
there is a unit with respect to 0. 

ProoJ The statement is an immediate consequence of the relation w df = [U, f] taking 
into account that is A-bilinear. 0 

If a first-order differential calculus is inner, i.e. df = [ p ,  j ]  (V f E A) with an element 
p E Q'(d), then p is unique. This follows from lemma 3.4 together with the fact that 
the unit of an algebra is unique. This in tum implies that, if d is inner, the center of the 
A-bimodule C2'(d) is trivial, i.e. (< E Q'(d) I [<, f l  = 0 V f E d] = IO}. 

Let Z be the two-sided differential ideal in fi(d) generated by ker@. Now 

Q(d)  := fKA)/Z (3 9 ) 

together with d := 7r o 2 is a differential calculus on d. Here, x : fi(A) + Q(d)  is the 
canonical projection. The ideal Z has a decomposition 

m 

z=@. 
r=O 

where 20 = (0) and Z' = ker@, so that 

m 

r=O 

Q(d) = @Q'(d) with Q'(d) = &(d)/Z' 

(3.10) 

(3.11) 
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EmpIe .  
h'(A). Hence 

H C Baehr et a1 

fi'(d)*' := b'(A).fi'(d) is an A-sub-bimodule and also a two-sided ideal in 

Ic'(d) := fil(A)/fi'(A)" (3.12) 

carries an A-bimodule structure too and the induced product is trivial, i.e. the product of 
any two elements of IC'(A) is equal to zero. Now theorem 3.1 shows that all elements of 
IC' (A) commute with all elements of A. The extension to forms of higher grade is called 
Kiikler differentia[ calculus (IC(A), dx) on A [ 131. 

Let A be the algebra generated by x with the relation x N  = I for some N E N. Acting 
on the latter with the KWer derivation leads to 

xN-' dKx = 0 (3.13) 

which implies dKx = 0 so that the W l e r  derivation is trivial. In the presence of constraints 
one is therefore led to consider non-commutative differential calculi, where differentials do 
not commute with elements of A in general, in order to have a non-trivial d. In particular, 
this is so for differential calculi on finite sets [6]. 

Example. Let A be the commutative and associative algebra which is freely generated by 
elements t and x (and a unit 1). An example of a differential calculus on d which is not 
inner is determined by the commutation relations 

[&,XI  =,dt [dx, t ]  = 0 = [dt,t] (3.14) 

where we assume that d x ,  dt is a basis of n'(d) as a left- (and right-) A-module. For the 
associated product we have 

dx.&=dt  dx*d t=O dr.dr=O. (3.15) 

This product is then consistent with commutativity of differentials and elements of A. 
A realization of this algebra is given by a stochastic time variable t and a Wiener process 
x = W,. The above relations are basic formulae in the It6 calculus of stochastic differentials 
(where d is not a derivation). Our example is easily generalized to the case of several 
independent Wiener processes. See also [5]1 

3.3. The case of afreely andfniteIy generated algebra 

Let A be freely generated by elements x i ,  i = 1 ,  . . . , n, and the unit it.  From lemma 3.1 
we can then deduce that the I-forms 

(3.16) 

is totally symmetric in the indices i l . .  . . , i,, so 

?il-ir' := &.ii . , , . . &i, (r = I ,  ... ) 
generate h ' ( d )  k a left-A-module. 
that we should restrict the latter by i l  < i2 6 . . . < i,. 
Lema 35. The set of I-forms 

B := (5i'"'ir E 8'(d) I i l  6 ... < i r ,  r = 1.2, .. .) (3.17) 

is a basis of b'(A) as a left-A-module. 

t A mnsists of finite linev combinations of monomials in %I,, , , , xn and 1 with mefficienu in C, i.e. 
A = C[x'. .... x " ] ,  We will not discuss here a possible extension lo infinite sums (e.g., the case of analytic 
functions on Rn). 
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Proof We already know that B generates fi'(A) as a left-A-module. It is therefore 
sufficient to show that any finite subset of B is linearly independent over A. Let 

with A,... i ,  E A. Using 

the above equation leads to 
o = h,... i, @ x" . . .xi" +rest 

il<i2-<im 

where 'rest' consists of a finite sum of tensor products of which the second factor is a 
monomial of degree c n in the generators x i  of A. Since A is freely generated, we conclude 
that f i  ,... in = 0. By repetition of this argument, fi ,... ;, = 0 V i l ,  , . . , i,. r = 1, . . . , n. 0 

Similarly, one can q u e  that the 2-forms i't"", ?jl...j, (r, s = 1. . . .) constitute a basis 
of @(A) as a left-A-module (see also lemma 3.2), and correspondingly for &(a) with 
r > 2. 

As a consequence of the preceding lemma 

(3.18) 

with operators bj, ... i, : A --f A, where the indices are totally symmehic. Inserted in (3.6) 
this leads to 

which, in particular, shows that the operators b, are derivations. As a consequence of 
(3.18) they satisfy bjx '  = 8; and therefore coincide with the ordinary partial derivativest 

Applying a to (3.18) using (3.8) in the form 

- 
D~ = ai. (3.W 

-2 
and d = 0, we obtain 

(3.21) 

(3.22) 

Together with (3.20) this implies 
- 

(r = 1 , .  . .) . (3.23) 

So far we have treated the case of the universal differential calculus with its algebra structure. 
For any other first-order differential calculus @(A), d) we can define ril'''ir as in (3.16) 
(with Li replaced by hi). These I-forms are then, however, not linearly independent. 
Nevertheless, the formulae derived above induce corresponding formulae for any differential 
calculus, as demonstrated in the following examples. 

t The 'ordinary pMid derivatives' are the derivations & : A -+ A (k = I .  . , . , n )  with &x' = 6:. 

1 D .  . - - a  . . . .  a 
r !  I'  5 I , . . . I ,  - 
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Examples. 

(1) For the Kahler calculus. where dx' dxj = 0, we recover the familiar formula 

(2) The lattice calculus in [3] is determined by dx' dxj = e8'jdxj (no summation, 
e E W \ {O)). In this case we obtain 

H C Baehr et a1 

We evaluate (3.18) with (3.23) for some examples of differential calculi. 

df = (&f) dx'. 

" 1  
df = c e (exp(e&) - 1)fdx' 

i=l  

In the universal differential calculus, the ideal by which we have to factorize @(.A) in 
order to obtain the calculus under consideration is generated by &' & j  - e8'j&j. 
Representing the xi as coordinate functions on C" (or W') and evaluating the last expressions 
on (a, b) E C" x @" using (2.7), we find 

(&i . &f - es'j &X')ca, b) = (bj - ai)[b' - ai - e&Vl, 

Equated to zero, this precisely displays the lattice structure. 

(3) For n = 1 (for simplicity), the symmetric lattice calculus discussed in [6] can be defined 
by dx .dxodx=12dx.  Then 

= 8f dx + Af dx dr 

where 
1 1 3 f := -[f(x + e) - f(x -e)] ~ . f  := e2 [f(x +e)  t f(x -e )  - zf(x)i .  ze 

With x as a coordinate function on C, we find 

(& & o b  - e 2 b ) ( a ,  b)  = (b -n)[ (b -a)' -e2] 
Equated to zero, this implies b = a or b = a + e or b = a -e  which reveals the symmetric 
lattice structure (see [q). 

For e = 0 one obtains 

df = afdx + 4 a2fdx dx  . 
The last type of calculus appears in the classical limit (q + 1) of a bicovariant differential 
calculus on the quantum groups SL,(n) [14,5,15]. Via dx dx H dt contact is made with 
the calculus of the last example in the previous subsection. 

(4) Generalizing the last two examples for n = 1, we consider the ideal in 6'(d) generated 
by 

(&).(k+l) - et & 

for some fixed k E N. Evaluated on (a, b)  E C x @, it leads us to the equation 

(b - a)[@ - a)' - e'] = 0. 
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This defines an algorithm which, fixing a starting point a, generates new points a + lq' for 
r = 0,1,. . . , k, where q is a primitive kth root of unity. In this way, a lattice is created in 
the complex lane and the differential calculus can be restricted to (the functions on) it. 

e 1  Using E,, q' = (qk - l ) / ( q  - 1) = 0 for k > 1, we find 

with 

In terms of the I-forms 

this becomes 
k-1 

df = Crfcx +e& - f ( x ) i  e l .  
j = O  

Furthermore, we have the following simple commutation relations: 

e j  f ( x )  = f ( x  +@)e' . 
Fork = 3 the lattice is hiangulari. More precisely, it should be regarded as an oriented 

lattice. For k = 4 one obtains the corresponding symmetric lattice. 

4. Deformations of the ordinary differential calculus on freely generated 
commutative algebras 

Throughout this section A denotes an associative and commutative algebra which is freely 
generated by X I ,  . . . , x" and the unit I. Furthermore, we resmct our considerations to 
n-dimensional firsborder differential calculi (Q' (A), d). For these calculi the differentials 
dx', i = 1, . . . , n, form a basis of Q1(A) as a left-A-module. Such calculi may be regarded 
as (algebraic) deformations of the ordinary (Kaler) differential calculus and are therefore 
of particular interest. As a consequence of these assumptions 

hi . d x j  = [ h i ,  x j ]  = cijk dx' 

with C'jk E A. The commutativity and associativity of imply 

(4.1) 

(4.2) Cijk & = . d x j  = d x j  . = cji, &k 

t It is of the kind which underlies the hard hexagon madel in statistical mechanics I161 



which lead to the consistency conditions 
ii c i k c  citm = c j k ,  cit ciik = c m (4.4) 

(see also [9). In terms of the (structure) matrices Cy with entries (Ck)'j := C"j the first 
of these conditions means that the jth row of Ci equals the ith row of CJ. The second 
condition says that the C' commute with each other: 

(4.5) 
Furthermore, C'c" = c'jkc'. The matrices C' thus provide us with a representation 
of the algebra (Q'(d), 0) .  As a consequence of the foregoing, the classification of first- 
order differential calculi of the kind specified above with Clip f @ is equivalent to the 
classification of commutative and associative algebras over @. 

Remark. More generally, when the conditions (4.4) are satisfied, (4.1) determines a (first- 
order) differential calculus on any algebra A which is freely generated by the x i  modulo 
commutation relations such that [ x i .  x i ]  is constant with respect to d (for all i ,  j ) .  Special 
examples are the Heisenberg algebras of quantum mechanics (see also [1,8] for related 
work). Further examples are the algebras considered in [17] where [ x ' ,  x ' ]  = i Qxe with 
an antisymmetric tensor operator Q'i which is central in the algebra generated by the xXt. 
The solutions of the consistency conditions presented in subsections 4.3 and 4.4 therefore 
also determine differential calculi on such non-commutative algebras. 

c' CI = CI ci . 

In the following subsections we first introduce a notion of 'extension' of a differential 
calculus (following the general receipe of subsection 2,4). A procedure for the classification 
of differential calculi with constant structure functions is then outlined and applied to the 
cases where n = 2 and n = 3. The action of an exterior derivative on A is determined by 
left- (or right-) partial derivatives, for which we derive some general formulae and which we 
calculate for several examples of differential calculi. Particular solutions of the consistency 
conditions for arbitrary n are discussed inthe last two subsections. 

4.1. Inner differential calculi and inner exremiom of differential calculi 

The following result gives a criterion for a differential calculus to be inner (in the sense of 
subsection 2.4). 

Lemma 4.1. 
n x n matrix). 

Prooj 
3': follows immediately from (4.1) and dx' = [ p ,  x i ] .  
'e': 
df=$(Dif )dx '  = p x ( D , f ) C i k j d x j  = P k ( D , f ) [ d r ' , X ' ]  =p'[df,XXLI 

d is inner if and only if there is a I-form p = pk dx' with p k  d = 1 (the unit 

pk f1 bs f 1 .  

t Here we have 10 make the assumption Lhai Qkt is annihilated by d, 
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Let (G"(d), d) be a first-order differential calculus. To the generators x ' ,  . , . , x" of d 
we adjoin an element x"+I to freely generate the larger commutative algebra A = d[x"+'l. 
On the latter we introduce an (n+l)-dimensional first-order differential calculus via structure 
matrices as follows. Define 

where C' are the structure matrices of @(A),  d) and e' is the row vector with entries 
e: = Sj, j = 1,. . . , n. Let e+' be the (n  + 1) x (n  + 1) unit matrix. The matrices 
e', I = 1, . . . , n + 1, then satisfy the consistency conditions (4.4) (if the C' satisfy them). 
For the enlarged differential calculus ( Q 1 ( d ) ,  2) =: Ext(n'(d), d) the extended derivation 
is inner 

;If = [;1x"+l, f l  (v f E A) (4.7) 

i.e. we have (2.14) with p =&?+I. In particular, if (O1(d),d) is not inner, then there is 
always an extension of it which is inner. Tnis observation is helpful since it is often much 
easier to cany out calculations with an inner exterior derivative. 

4.2. Procedure for classiJication of constant structure functions 

with the additional assumption that the structure functions are constant, i.e. Ciik E C, it 
is in principle possible to classify all first-order differential calculit. This has been done 
in [3] for the case n = 2. However, the methods used there are not applicable to the case 
n z 2, in contrast to the procedure which we outline below, which is then applied to the 
cases n = 2 and n = 3. 

Under a GL(n,  C)-transformation 

x'' = U k e x e  with U = (U',) E GL(n ,  C) (4.8) 

the commutation relations (4.1) are invariant if 

1. = U',  U j s  C'St  (U-*)r& (4.9) &i 

and 

C" = Utj  ( U @  u-1) (4.10) 

respectively. These transformations preserve conditions (4.4). In order to classify 
differential calculi one should therefore determine all equivalence classes of structure 
matrices with respect to GL(n,  @)-transformations. Thanks to the commutativity of the 
matrices C', there is a U E GL(n.  @) such that, for all i = 1.. . . , n, the UC'U-' are 
triangular, i.e. have zeros evei-ywhere above the diagonal. This is a consequence of the 
Jordan trigonalization theorem. But then also the C" in (4.10) are triangular as linear 
combinations of triangular matrices. 

7 All first-order differential calculi wih constant s m c t w  functions exlend to higher orders with the usual 
anticommutation rule for the product of differentials. dx'dd = - & j d x ' .  Of course. this simple rule does 
not extend to arbitrary I-forms in case of a non-commutative differential calculus (where some of the CjJk are 
different fmm zero). 
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Hence, in each GL(n, C) orbit of shucture matrices there are representatives which are 
triangular and only for those we have to solve the GL(n, C)-invariant conditions (4.4). The 
symmetry condition now reduces the C' to the following form 

(4.11) 

Although we made use of the fact that the C' have to commute with each other in order to 
derive (4.1 l), the commutativity is not yet built in completely. The further procedure may 
now be as follows. There are GL(n.83)-transformations which preserve the above form 
of the matrices C'. They can be used to further simplify their structure. The remaining 
complex constants are then constrained by quadratic equations resulting from the condition 
(4.5) that the C' have to commute with each other. These equations have to be solved. 

In the simple case n = 1, where [dx, x ]  = c d r ,  there are two orbits. c = 0 represents 
the ordinary (K&ler) differential calculus. We refer to it as a. The other orbit where 
c f 0 can be represented by c = 1. It describes a differential calculus on a one-dimensional 
latticei denoted by @. 

From these one-dimensional calculi one can build differential calculi on algebras with 
more than one generator. The general cons6uction has been recalled in subsection 2.3. Let 
y', . . . , y' and z', . . . , zs be the generators of two commutative algebras with, respectively, 
r -  and s-dimensional (first-order) differential calculi determined by 

[dy', yb] = Cnb,dyc [dz", zb'] = C""? dz'. (4.12) 

For xy := yo 8 1 and x'+"' := 1 8 2"' this implies 

[&,J] = ?jt& (i, j = 1,. . . , r + s) (4.13) 

where P c - - c'* c. &+a'~+b'?+? = ~ " " ' 6  and e i j k  = o otherwise. Conversely, if after 
some G L ( n ,  C)-transformation the structure matrices of a differential calculus decompose 
in this way, the calculus is reducible and can be expressed as a skew tensor product of 
lower-dimensional calculi. 

The n-dimensional irreducible calculi can be further classified into those which are 
extensions (in the sense of subsection 4.1) of (n  - 1)-dimensional calculi and those which 
are not. This makes sense on the basis of the following result. 

Lemmu 4.2. The extensions of all representatives of a GL(n,  C) orbit of n-dimensional 
differential calculi lie in the same GL(n + 1,C) orbit. 

t To see this, one actually has lo go beyond B e  algebra of polynomials since functions with period c play an 
essential role in this case [31. 
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Proof: With the special GL(n + 1, C) matrix 

6=( U 0  ) 
0 1  

where U E GL(n, C) we find 
c=d',bE'b-'=U'j( U 0 J (  cj e j  0 o ) (  U-' 0 

U 
Furthermore, Since U g j e f U - '  = e', this is the extension of the U-transformed Ci. 

@+I = (which is the (n + 1) x (n + 1) unit matrix). 

4.3. Clarsifrcntion of two-dimensional differential calculi 

For n = 2 equation (4.1 1) becomes 

a 0  
b O  c d  

(4.14) 

The two matrices commute iff the complex constants a, b, c. d are related by 
b2 - a c -  bd  = O .  (4.15) 

An arbitrary element of GL(2,  C) is given by 

(; :) (4.16) 

with V := su - tu # 0. It acts on the matrices C' as follows 

szua + 2 t u b  + t2uc - tZud -&a - 2 t z b  - t3c + st2d 
Suva + u(su + tu)b + fuZc - tuud -stua - t ( s u  + tu)b - t2uc +stud 

Suva + u(tu + su)b + tu2c - tuud -stua - t ( tu  +su)b - tZuc +stud 
uzua + 2uu2b + u3c - uv2d -tu2a - 2tuub - tuZc + suzd 

2, 

1 .  
( 

7 
c" = 1 

C'2 - V 
(4.17) 

For ? = 0 this transformation preserves the form of the matrices in (4.14) 

(4.18) 
sa ua + ub 

u a + u b  0 :(Uz, + 2uub + u2c - uud) ud 

It can thus be used to further reduce the parameter freedom of the matrices C' 
If a # 0, we sets = l / a  and U = -ub/a. Then 

using (4.15). If d = 0 we have C" = 0. Otherwise the choice U = I/d leads to 

(4.19) 

(4.20) 
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If a = 0 and b = 0, so that C” = 0, we can arrange either Cr2 = 0, C’2 of the form (4.20), 

H C Baehr et a1 

01 

In the remaining case a = 0 and b # 0 one can always reach 

(4.21) 

(4.22) 

In all these cases, (4.15) is automatically satisfied. It has still to be checked, with the help 
of (4.17), which of the representatives for C‘ and Cz obtained in this way generate different 
orbits. In the following we list representatives from all distinct orbits. The respective 
complete orbit is then obtained via (4.17)t. 

(1) For C’ = Cz = 0 we recover the commutative (Kaler) differential calculus. It is 
reducible since it is the skew tensor product of two one-dimensional commutative differential 
calculi: 6 @. 
(2) The pair of matrices 

CL( 0 

represents 6 a. 
(3) The matrix pair 

C L ( ;  

corresponds to 6 = E x t a ) .  

(4) A further calculus is given by 

It is neither reducible nor the extension of a one-dimensional calculus. It therefore plays 
a role as a ‘building block’ for the construction of higher-dimensional differential calculi. 
We will refer to it as m. This calculus is a special case of a class of calculi which has 
been investigated in [4,5]. 

(5) Another irreducible calculus is determined by 

It is the extension of and shall hence be denoted as E x t m .  

t The pair of matrices C’ with n = I and b = e = d = 0 which we encountered above lies in the orbit of solution 
(2). 
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If we want to have an involution on the differential algebra, we have to decompose the 
calculi into orbits with respect to the action of GL(2,  B). The G L ( 2 ,  C) orbit of (3) then 
splits into two GL(2. R) orbits (cf [3]). 

4.4. Classification of three-dimensional dc@erential calculi 

In this subsection we apply the procedure described in subsection 4.2 to the case of an 
algebra with three generators. (4.1 1) then reads 

C ' = (  b 0 0 )  C z = (  d e 0 )  C 3 = ( ;  h k l  :). (4.23) 

The complex entries are subject to the relations 
bZ - be - ad = 0 
bc - a f .  - bg = 0 
c2 - ah - bk - cl = 0 
c d + e f  -bf -dg=O 

g 2 -  ek - g l  = 0 .  

a 0 0  6 0 0  

c o o  f S 0  

(4.24) 

c f + f g - b h - d k - f l = O  

Proceeding as in the two-dimensional case treated in the previous subsection, after a tedious 
calculation one ends up with the following list of representatives of GL(3, C) orbitst. 

(1) 6 6 m. 
(2) 6 6 ig 

0 0 0  0 0 0  0 0 0  

(3) 6 6 
0 0 0  0 0 0  0 0 0  

(4) a& 6 = E x t m  6 a) 
1 0 0  0 0 0  0 0 0  

(5) III 6 
0 0 0  0 0 0  0 0 0  

t Some more derails are presented in [9]. 
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(6) (IJ 64 
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0 0 0  0 0 0  0 0 0  

(7) Extm 8 

c’= 1 0 0 ( 0  0 0 )  c2= ( 1  0 0 1 0 )  0 c3= ( 0  0 0 0 0) 0 . 
0 0 0  0 0 0  0 0 0  

(8) Ex@) 8 = Ext(Ext(@) = Ed(@ 8 
0 0 0  0 0 0  

(9) An irreducible calculus is given by 

0 0 0  0 0 0  

(10) Another irreducible calculus is determined by 

0 0 0  0 0 0  

(11) Extm8m 
0 0 0  0 0 0  

(12) Extm 

0 0 0  0 0 0  

1 0 0  0 1 0  

c3= 1 0 0 . (11  R) 
c3= 1 0 0 . ( 1 :  R) 

1 0 0  

0 0 1  
c 3 = (  0 1 .). 

c3= 0 1 0 . i:: P) 
The last four of these calculi are irreducible. Only two calculi, (9) and (lo), are new in 

the sense that they cannot be obtained as a skew tensor product or an extension of lower- 
dimensional calculi. We shall see in subsection 4.5 that (9) is a special case of the calculus 
explored in [4,5] for arbitrary n, to which the two-dimensional calculus also belongs. 
A generalization of (10) to arbitrary n is presented in subsection 4.6. 
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4.5. Lep- and right-paaial derivatives 

Lefrpartial derivatives are defined as C-Linear maps Dj : A 3 A by 

df =: ( 4 f ) d . d  V f E A .  

Using (4.1), one finds 

[df,h] =(Dif)[&' ,h]= ( D j f ) [ d h , x ' l  = ( D i f ) ( D j h ) [ d d , x ' l  

= ( D j f ) ( D j h )  Cij,dXk. 

This leads to 

Dj( fh)dxj=d(fh)  = f d h + h d f + [ d f , h l  

= { ( D j f ) h  + f Djh i- (&f)(D&) C kt j l  dxj V f , h c A  

from which we can read off a twisted Leibniz rule for the Dj. 

L e m  4.3. The left-partial derivatives are given by 

3215 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

in terms of ordinary partial derivatives?. 

Proox First we note that (Ckl . . . Ck,-t)k,j is totally symmetric in the indices kl, . . . , k, as 
a consequence of C'jk = Cjik  and the commutativity of the structure matrices C'. Because 
of the C-linearity of the Dj it is sufficient to prove (4.28) on monomials in x ' ,  i = I ,  . . . , n. 
This will be done using induction with respect to the degree of monomials. Applied to xi 
the formula is obviously true. Let us assume that it holds for monomials up to degree in. 
If U is a monomial of degree m,  then 

= 8; U + Ci', Dcu + xi Dju 

= (Djx') U -t xi Dj U + Ckej (&xi) D ~ u  = D ~ ( x ' u )  

where we used (4.27) and Djx' = 8; in the last steps. 

t The first summand an the rb.s. is aj. 
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Remark. For any first-order differential calculus (Q'(A),d) we define T ~ ~ ' . ' ~ ,  as in (3.16) 
(with &xi replaced by dxj). Then (4.1) leads to 

Til-.i, = c i t i z k , c i > k i k t  ...ci,.%-~~&. (4.29) 

H C Baehr et a1 

Inserting this in (3.18), we obtain 
df = D k f  dr' 

with 

(4.30) 

This is our equation (4.28). 

Lemma 4.4. 

(4.32) 

PTOOJ: We have 
[dr',f]=[df,~']=(Djf)[d~',~']=(D~f)C~~ydx~. 

Inserting expression (4.28) for Dj, we find 

Here we have stressed the possible x'-dependence of the structure matrices which 
necessitates the introduction of the auxiliary variables yy in the last expression. 

Let us suppose that Ql(d) considered as an algebra with the product (see section 3) 
is nilpotent, i.e. there is a number k E N \ (0) such that all products with k factors vanish 
(see [18], for example). The smallest such number is called the index of the algebra. Since 
multiplication is determined through the n x n matrices C',  the index can be maximally n. 
Then (4.28) shows that the left-partial derivatives are differential operators of at most nth 
order. 

If (Q'(d), 0 )  is not nilpotent, then there is a non-vanishing idempotent element (see 
[NI, for example). The sum in (4.28) is then not finite, so that the left-partial derivatives 
are non-local. This i s  the case, for example, for the 'lattice calculus' and for each 
differential calculus which is an extension in the sense of subsection 4.1. 

For the righr-puniul derivatives D - j  defined by df =: dxi D-j f. equation (4.28) is 
replaced for constant C by 

(4.33) 
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In the following we examine the four irreducible calculi which we found in E m p l e s .  
subsection 4.4, and present the corresponding left- and right-partial derivatives. 

(9) In this case, the only non-vanishing commutators (4.1) are 

[ d x Z ,  x31 = [ d x 3 ,  x21 = dr’ . (4.34) 

D*] = a] * aza3 ok2 = a2 D~~ = a, (4.35) 

in accordance with the fact that the index of the associated algebra is equal to 2. In terms 
of y’ := xl, y2 := 5 (x2  + x 3 )  and y’ := 1 ( x 2  - x 3 )  we obtain Jz 

[dy’, y”] = -8’” dy’ (/J, U = 2 ,3 ) .  (4.36) 
This is a special case of a differential calculus which has been studied in [4,5] (see also 
equation (1.3) and the second example in subsection 3.2). 

(IO) Here, the non-vanishing co&utators are 

The corresponding left- and right-partial derivatives are 

[dr’, x3] = [dx’, x2]  = dr I [ d x 3 , x 3 ]  = dx2 (4.37) 
and the left- (right-) partial derivatives are 

= al f. a2a3 + t a; D * ~  = az & 4 a: D*, = a,. (4.38) 
The differential of a function f thus involves third order derivatives 

df = (a, + a2a, + a:)f dxl t (a, + ; a:)f du2 + ad dx3. (4.39) 

For the associated algebra the index is 3. A generalization of this new calculus to n 
dimensions with up to nth order left-partial derivatives will be described in the next 
subsection. 

(1 1) In this case we have 

[ d x ’ , ~ ~ l = [ d x ~ , ~ ~ l = d x ~  [dx’, x 3 ]  = [dx3, x 2 ]  = dx2 1 d r 3 . ~ 3 1 =  du3 

(4.40) 

with the left- (right-) partial derivatives 
Dal = al exp(f&) D*2 = & exp(+a,) Di3 = *(exp(f.a,) - 1). (4.41) 

(12) Here we have the non-vanishing commutators 

[dr’.x3]=[dx3,x1]=dr I [dr’,x’]=dx* 
(4.42) 

[dx’, x3] = [dx3, x2] = dx’ [dx’, x 3 ]  = dx3 
and the left- (right-) partial derivatives 

(4.43) 

U 

Let us consider a differential calculus which is an extension in the sense of 
subsection 4.1. D,, I = 1. . . . , n + 1, are the corresponding left-partial derivatives and 
Dj,  j = I , .  . . , n,  those of the n-dimensional calculus which generates the extension. Then 
we have the following result. 
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Lemma 4.5. 

H C Baekr et a1 

f i j  = D~ exp(a,+,) ( j= I, .... n)  
" 

D,+I = exp(ant1) - I . 

ProoJ Recalling equation (4.7), we find 

d f = [dx"", f] 

(4.44) 

(4.45) 

= (exp 6) - 1); f (y)I dx.' using (4.32) 
Y = x  

= f i , f d x J .  

On functions which do not depend on x"+' the 6j coincide with the operators Dj. Hence 

y=r 

(4.46) 

With this observation, the conjectured formulae follow immediately. 

In the last two examples treated above, (11) and (12), we have special cases of this 
general result. 

4.6. An n-dimensional differential calculus with up fo ntk-order partial derivatives 

The relations 
dx '+ j  i f i + j < n  

[dx',x'l= 
otherwise 

(4.47) 

determine a consistent differential calculus on A. For n = 2 this is our calculus 
for n = 3 we recover the calculus (10) of subsection 4.4 (up to a renumbering of the x i ) .  

such that 
where e' means that e appears exactly k times in p(m).  With the definitions 

and 

A partition p(m) of a positive integer m is a sequence of positive integers P I , .  . . , pr 
pr = m. It is always possible to write p(m)  in the form ( I x ' ,  Z k 2 , .  . . , mkm) 

(4.48) p(m)!  := (kl 1) .  . . (km!)  := a,, . . .a,, 
one finds 

The first four left-partial derivatives are thus 
D, = a ,  
DZ = az + 4 a: 
o3 = a, + azai + a: 
D~ = a, + ha, + 4 a; + ; aza: + &a: 

(4.49) 

(4.50) 
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4.7. On some solutions of the consistency conditions 

we can always decompose the structure functions as follows 

(4.51) 

The first of the consistency conditions (4.4) requires that 
pVk = pji, 

and the second becomes 

p i k  P j m e  - PJkm Pimt + _. 

n + l  

(4.53) 

(4.54) 

For vanishing P'jk this implies C' = 0 and thus C'jk = 0. A non-commutative differential 
calculus therefore has to have a non-vanishing traceless part of Cijk. 

In what follows, we consider some solutions of the consistency conditions for general 
n. With minor modifications these are taken from [19] where the consistency conditions 
(4.4) arose in a different context. Instead of using (4.51) it appears to be more convenient 
to use a corresponding decomposition with C' replaced by vector components Pi and P'jk 
not necessarily traceless. A simple solution of (4.4) is then 

c t j k = g : p j + J i p i - p l p j  uk (4.55) 

with an additional covectort U subject to 

U, P k  = 1 .  (4.56) 

A generalization of this solution is given by 

PI . PI PI . Pz . . , PI , PL 
8;P:+$P[-P[P/U& 6ktP: ' 6ktP: ... 

0 

(4.57) 

I -(Pi - PL)(P/ - Pi) PL .P PL. P, ... PL . P L  I 
in terms of a determinant (cf [19]). Here PI , .  . . , PL are L < n linearly independent 
vectors, all subject to the condition (4.56). Furthermore, we have introduced the abbreviation 
P . P' := Pi P a  and the subdeterminant 

1 P, '  P, Pt. P2 ... PI .  P L  I 

(4.58) 

t Pi and U, transform as the mmpooentr. of a veclor and a covestor, respectively. under CL(n, @)- or, more 
genevdly, GL(n, A)-tmnsformations, cf subsection 4,Z. 
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Equation (4.57) is obviously symmetric in the two indices i, j .  It satisfies c"kp; = 
Pip:, CY = 1, .  . . , L ,  which can then be used to prove that also the second condition in 
(4.4) is satisfied (cf [19J)t. A different proof is given below, which, moreover, provides us 
with a clear characterization of the differential calculi determined by (4.57). 

Lemma 4.6. Via a GL(n, A)-transformation. equation (4.57) is equivalent to 

H C Baekr et al 

.. 1 
C"X = a 

8; P,' + a,/ Pi - Pi P,' 8kt &( P: 
-(PA - @ ( P i  -Pi) Pe, P# P, . P" 

0 P, . Pp P, . P, 

so that 

C" = (W) CJ = (H) C" = (W) 
0 -v 1 

where (E"); = 8t6; and (eJ).y = 8:. I is the (n - L )  x (n - L )  unit matrix. A further 
GL(n, A)-transformation with 

A =  (w) 
eliminates the V-term. 0 

According to lemma 4.6 the calculus determined by (4.57) is 8 for L = n and 
(hL-] @ 8 E ~ t ( v - ~  @) for L 4 n where Ext indicates an extension in the sense 
of subsection 4.1. Comparison with the list of calculi in subsection 4.4 shows that the 
ansatz (4.57) does not exhaust the possibilities by far. 

One can try other ansatze, but it is unlikely that this can be made into a systematic 
procedure to obtain the complete set of solutions of the consistency conditions (4.4). 

t We were unable to verify the statement in 1191 L h l  certain linear combinations of t m s  of the form (4.57) (cf 
equation (28) of [19]) also satisfy the nonlinear condition in (4.4). A counteraample is given by n = 3, L = 2 
wifh PI' = 6;. Pi 8: (and U, = 6; + 63 .  
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5. Conclusions 

In this work we have started a systematic exploration of differential calculi on commutative 
algebras and presented several new results. 

A central part of this work is the classification of three-dimensional differential calculi 
with constant structure functions (on a commutative algebra with three generators). Much 
of the additional material in this paper provides the necessary background or arose from 
insights obtained via this classification. Apart from having solved h e  classification problem 
for n < 3, we have presented generalizations to arbitrary dimension n for all the calculi 
found in this way. 

Only four of the three-dimensional calculi (more precisely: G L ( 3 ,  (6) orbits) obtained 
in subsection 4.4 turned out to be irreducible, i.e. they are not skew tensor products of 
lower-dimensional calculi. Two of these are extensions of two-dimensional calculi (in 
the sense of subsection 4.1). They are 'non-local' in the sense that their left- (or right-) 
partial derivatives involve finite difference operators. The remaining two genuinely three- 
dimensional calculi have local (though higher-order) left- and right-partial derivatives. 
For one of them, a generalization to arbitrary dimension is already known [4,5]. A 
corresponding generalization of the other calculus is presented in subsection 4.6, the left- 
partial derivatives are differential operators of up to nth order. 

Our classification procedure extends to n z 3, but the corresponding calculations become 
much more involved. Computer algebra should then be helpful. 

For the new calculi we have so far been unable to find any relationsship with structures 
of interest in other branches of mathematics or in physics, similar to what we have for the 
examples mentioned in the introduction. Further investigation of these calculi is therefore 
required. There is, however, a general aspect which supports our investigation from a 
physical point of view. A study of differential calculi on finite sets has shown that the 
choice of a differential calculus assigns to a set a structure which should be regarded as an 
analogue of that of a differentiable manifold 161. The present paper provides new examples 
of such generalized spaces which can be regarded as deformations of B" with the ordinary 
differential calculus. Such a deformation induces (in a universal manner) corresponding 
deformations of models and theories built on the differential calculus (cf [3,4,6]). There 
is the hope to obtain in this systematic way physical models which are somehow close 
to known models but which improve the latter by properties like complete integrability or 
finiteness (of quantum perturbation theory, in particular for non-renormalizable theories like 
gravity). 
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